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1. INTRODUCTION

Referring to a paper of Franchetti and Furi [14J the concept of best
coapproximation in normed linear spaces was introduced by Papini and
Singer [20] in 1979 as a counterpart to the well established best
approximation, If K is a nonempty subset and x an element of a normed
linear space X, then in best approximation, those elements k E K (if any)
are considered for which

Ilx-kll::'; Ilx-k'll Vk'EK,

while in best coapproximation, the interest is in those k E K (if any)
satisfying

Ilk-k'll::'; Ilx-k'll (1.1

Among others, best coapproximation seems to be an adequate tool in
describing certain phenomena relevant in the study of contractive projec
tions and sunny retractions which, in turn, are related to the theory of fixed
points of contractive and quasi-contractive mappings (cf. for instance [2,9,
10, 11, 12J). In particular, what is called a "cosun" in the setting of best
coapproximation was used by Browder [9J in his study of approximants to
fixed points of contractive mappings to generalize the "sun" property of
closed sets in Hilbert spaces to more general Banach spaces. For precise
definitions see Section 2 below.

In his thesis L. Hetzelt [16J intensively studied best coapproximation in
finite dimensional normed linear spaces, in particular, metrical properties
for cosuns in the normed plane as well as in strictly convex spaces, A cosun
in an arbitrary normed linear space always is a dosed norm-convex set.
The converse-a closed norm-convex set is a cosun--is valid in the normed
plane (c[, [15, 17]) as well as in Hilbert spaces and characterizes Hilbert
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spaces among the Banach spaces of dimension greater than two [16].
Therefore, in normed linear spaces of three and higher dimensions, in
general, additional properties are necessary for characterizing cosuns. A
contribution in this direction is a result of L. Hetzelt [16] for n-dimen
sional fP-spaces, 1 < p < 00, P =I- 2, related to the concept of H-convexity
(cf. [8]).

A subset of W is a cosun in fP(n), 1 < P < 00, P =I- 2, if and only
if it is the intersection of a family of closed half spaces whose
normal vectors have at most two coordinates different from
zero. (1.2)

This is an extension of :;l result of Bohnenblust [7] characterizing those
linear subspaces of IP(n), 1 < P < 00, P =I- 2, which are the range of a
contractive linear projection.

In nonstrictly convex fP(n )-spaces characterizations of cosuns seem to be
unknown. It is the aim of this paper to describe cosuns in l'(n). Further
more, we give a unified approach to cosuns in fP(n) for the two cases:
1 < P < 00, P =I- 2 and p = 1. It turns out that a kind of cylinder set may
be regarded as fundamental for cosuns in IP(n), 1~ p < 00, P =I- 2. By a
cylinder set in [Rn we mean a product of the form

(1.3)

where i, j E {I, ..., n}, i <j, and Be [R2. We characterize the cosuns in IP(n),
1~ P < 00, P =I- 2, as those norm-convex sets which are intersections of
closed cylinder sets (cf. Theorem 4.12). The proof is established by an
inductive argument and if 1< p < 00, p =I- 2 provides an alternate to the
procedure in [16].

For p = 1 we obtain a characterization of cosuns that may be considered
as a direct analogue to (1.2). Indeed, the class of closed half spaces whose
normal vectors have at most two coordinates different from zero is replaced
by a class of norm-convex sets in P(n) that have a quite simple structure,
namely the so-called "angular spaces" whose both outer normal vectors lie
in a quadrant of a two-dimensional coordinate plane. (By an angular space
we mean a proper connected subset of [Rn that is the union of two closed
half spaces.) Besides, a condition is needed that guarantees that the inter
section of a family of such norm-convex angular spaces of 11(n) is itself
norm-convex (cf. Theorem 5.3).

Our investigations essentially depend on the fact that in the spaces under
discussion, each existence set of best coapproximation is a cosun. The
latter was proved by Hetzelt [17] even for general finite dimensional
strictly convex spaces. We further extend this result to arbitrary finite
dimensional spaces in Section 3 of this paper. Previously, in Section 2,
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some preliminaries are provided. In Section 4 we characterize cosuns in
lP(n), 1~ p < 00, P # 2, by cylinder sets and in Section 5 by angular spaces.

The author thanks H. Berens for interesting discussions during the
preparation of this paper.

2. PRELIMINARIES

Let X be a finite dimensional real normed linear space with norm II ·11; in
case X=IP(n) we also write 11·ll p or 11·IIIP(n) for the norm. The semi-inner
product C -) s on X x X is defined by the right-hand Gateaux derivative
of 11-I1 2/2

( ,)._ l' Ily+txI1 2 -llyf
X,) s'- 1m 2 '

t~O+ t
(x, Y)EXxX.

For X= (Xl' ..., Xn), y= (Yl, ... , Yn)E1P(n), 1~p< 00, Y#O, there holds

n n

bill L x/sgn Y/+ liylll L lXii, p= 1

(X, Y)s=
i=l

y,#O

n

L xilYilP~1 sgn Y;/IIYII:~2,
,~l

l<p<oo.

For a subset K of X, X, K, and 8K denote its dosure, interior, and bound
ary, respectively; moreover, co K, lin K, and afT K stand for its convex,
linear, and affine hull, respectively. If K is a subspace, dim K denotes its
dimension.

We now introduce a special case of metrical convexity. If x, Y E X, x # y,
we say that a point Z E X is (metrically) between X and Y or a between-point
of X and Y, if z#x, Y and

Ilx-zll + Ilz- yll = Ilx- yll·

In a strictly convex space the set of points between X and Y is the line
segment {ax+(l-a)y;O<cx<1}. In case X=P(n), the set of points
between X= (Xl' ..., x n) and y= (Yl, ..., Yn) is given by

where N n := {I, ..., n}. A set K c X is caned norm-convex (also:
lP(n)-convex, if X=fP(n), if for any two distinct points k', k"EK there
exists at least one between-point k E K. By Menger, norm-convexity of
closed sets can be characterized as follows (cf., e.g., [6]):
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A closed subset K of X is norm-convex if and only if any two
distinct points k', k" E K can be joined by a rectifiable curve of
length Ilk' - k"ll entirely contained in K.

In a strictly convex space a closed norm-convex set is always convex.

For a nonempty set K c X and an element x E X let

BK(x):= {ZEX; Ilz-kll::::;; Ilx-kll VkEK}. (2.1 )

The metric coprojection from X to K is the set-valued mapping R K: X ~ 2x,
defined by

If K is closed, then R K is upper semi-continuous and compact-valued. For
each x E X, any k E RK(x) is called an element of best coapproximation of x
in K. It is convenient to identify a set-valued mapping with its graph in
X x X; thus for instance, we also write (x, k) E R K instead of k E RK(x). K is
called an existence set of best coapproximation, if RK(x) # 0 for each x E X,
and a cochebyshev set, if RK(x) is a singleton for each XEX.

If K is an existence set of best coapproximation, then K as well as
RK(x), for each x E X, are closed norm-convex sets, thus convex, if X is
strictly convex. In a strictly convex space, K is an existence set of best
coapproximation if and only if it is an optimal set in the sense of
Beauzamy-Maurey [3, Prop. 111.1.]. The connection between existence sets
of best coapproximation and optimal sets in nonstrictly convex spaces was
completely described by Hetzelt in his thesis (cf. [17J). We summarize a
few results on existence sets of best coapproximation in strictly convex
spaces to which we refer later in case X = [P(n), 1 < p < 00 (cf. [3, 16J).

If X is strictly convex, then the following hold:

(i) The intersection of a family of existence sets of best co
approximation is an existence set of best coapproximation.

(ii) Let K c X be an existence set of best coapproximation. If K# 0,
then every closed half space determined by a supporting hyperplane to K at
a smooth boundary point of K is an existence set of best coapproximation.
If K= 0, then aff K is an existence set of best coapproximation.

In a smooth space X, an existence set of best coapproximation that is a
linear subspace is even a cochebyshev set and, moreover, the range of a
unique contractive linear projection. If X is [P(n), 1 <p< 00, the contrac
tive linear retracts and their translates are the only cochebyshev sets of the
space (cf. [5, 22J).
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Concerning the definition of a cosun, let us introduce, for x E X, the set

G~:= {ZEX, <x, -z>s~O}.

The complement of Gx with respect to X is the "dual" analogue to the cone
of decrease of x with vertex at 0 which occurs in the setting of best
approximation in connection with suns. If K is a nonempty subset of X, the
approximation region between x and K is the set

Al((x):= {zEX;Kcz+Gx_J

= {ZEX; Ilz-kll ~ Ilz+A(X-z)-kll VkEK, VA>O}.

This concept originating from F. Browder [9J was used by R. E.
Bruck [10J for studying contractive retractions. The set-valued analogue of
the so-called "orthogonal retractions" in [lOJ is the mapping R~: X --+ 2K

defined by

(cf. [19, 20 J). K is called a cosun if R~( x) i= 0 for each x E X. Since
R~ c R K , a cosun is an existence set of best coapproximation. Moreover, K
is a cosun if and only if for each x E X, there is at least one k E RK(x) which
is an element of best coapproximation of each point on the ray through x
originating from k. This illustrates the relations between cosuns and suns
(see [21]). Note that a cosun K can be represented in the form

K= n (k+G~_d
(x.kIER~

which will be used especially for our investigations in the space [l(n).

3. THE "COSUN" PROPERTY OF EXISTENCE SETS

In [17J L. Hetzelt gave the following description of cosuns carrying over
a result of H. Berens [4J on suns in finite dimensional spaces to the best
coapproximation.

A subset K of a finite dimensional normed linear space X is a
cosun jf and only if the map )J+ (1 - J.) R K is surjective for all
). > 1. (3.1)

In [17 J the surjectivity condition is verified for existence sets of best coap
proximation in strictly convex spaces by a theorem from combinatorial
topology on set-valued upper semi-continuous, closed- and convex-valued
mappings with the additional property of being "outward directed" (see
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[18]). Thus, in a strictly convex space an existence set of best coap
proximation is a cosun. We extend this result to nonstrictly convex spaces
by replacing the metric coprojection R K in (3.1) by its convex-valued
extension

Cf. Proposition 3.2 below with the different situation in the setting of best
approximation as described by H. Berens [4, Satz 2].

PROPOSITION 3.2. A subset K of a finite dimensional normed linear space
X is a cosun if and only if AI+ (1 - A) (jjK is surjective for all A> 1.

Proof For K c X let us consider the compact- and convex-valued map
BK : X -+ 2x defined by (2.1) satisfying the following easily verified property.

If XEX, zEBK(x), and A~ 1, then zEBK(z+A(X-Z)). Thus zEAK(x) if
and only if zEBK(z+A(X-Z)) for VAE(O, 1).

Let x E X\K. We will show that the surjectivity condition implies
R~(x) i= 0. For every mEN, m ~ 2, there is some (xm, ym) E (jjK such that
x = mxm+(1 - m) ym. As ym E BK(Xm), we have, by the above remark,

Vm~2, VbE [0,1]. (3.3 )

For b = 1 this implies that (ym)m E N is a bounded sequence in X which may
be supposed convergent without loss of generality. Then,

lim xm= lim ym =: y.
m~oo m---+oo

The surjectivity condition implies K to be closed, then (jj K is upper semi
continuous and compact-valued, and thus y E (jjK( y). This means, y is a
convex combination of elements of RK(y), say y = L:;~ 1 r/ki

, where lEN,
kiERK(y), ai~O (i= 1, ..., I), and L:;~1 ai = 1. Then, for every jE {1, ..., I},

II y - kjll = II i~j ai(k
i
- k

j
) II ~ (1- a

j
) II y - kjll,

hence aj II y - kjll = 0, from which we conclude that y E K. It follows from
(3.3), as m -+ 00,

VbE[0,1],

thus y E AK(x) n K = R~(x).

We now proceed analogously to [17]. If K is an existence set of best
coapproximation and x E X\K, then for every ZE 8BK(X), the set (jjK(Z) lies
in the support cone to BK(X) at z. Thus, for every A> 1 the mapping
AI+ (1 - A) (jjK restricted to the compact and convex set BK(X) is "outward
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directed." Moreover, it is upper semi-continuous and assigns a nonempty
compact and convex set to each element of BJ((x), By the surjectivity
theorem in [18, Theorem 3.14, p. 47J, it follows

Thus the mappings AI+ (1 - A) t:/J K are surjective for all ). > 1.

THEOREM 3.4. In a finite dimensional normed linear space, an existence
set of best coapproximation is a cosun.

4. CYLINDER SETS

We first introduce some notation. For nE N let N n := {I, ..., n}. ei

denotes the ith canonical unit vector of W. We define the following
orthogonal projections. For i E Nn let

For i, i E Nn' i < i, let

1t .. '[Rn-.+fTl)2
IJ' lJl:i. ,

If necessary for distinction, we provide the signs for these projections with
a superscript n, e.g., ,7 instead of, i, to indicate that [Rn is the domain of r i'

If i, j E Nn such that i < i, then the 2-dimensional subspace of [Rn

is called the (i, i)-coordinate plane. It is decomposed into four quadrants
according to the partition of [R2. We always assume a quadrant to be a
closed set. A set C c [Rn is called a cylinder set, if there exist i, j E Nn' i < j,
and a set Be [R2 such that

The set

C = {z E W ; 1t ij(Z ) E B}. (4.1 )

is then called the base of C in the (i, i)-coordinate plane. Trivially, there
exist cylinder sets with bases in different 2-dimensional coordinate planes.

In this section we deal with cylinder sets that are cosuns in /P(n),
1:::;; p < 00, P =1= 2. They can be easily characterized as follows.
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If 1~ p < 00, P =f. 2, and C is a cylinder set of the form (4.1), then the
following four assertions are equivalent:

(i) C is a cosun in fP(n).

(ii) C is closed and fP(n )-convex.

(iii) B is closed and fP(2)-convex.

(iv) B is a cosun in fP(2).

Moreover, for every x E [Rn

Clearly, if p> 1 the intersection of a family of closed fP(n )-convex-and
thus convex-cylinder sets is always closed and (fP(n)-) convex. The
corresponding statement in case p = 1 is not valid in general, as can be seen
already by simple examples for n = 3. Anyhow, the following lemma holds
which, for convenience, is stated also for p> 1.

LEMMA 4.2. If a nonempty set K c jRn is the intersection of a family of
closed cylinder sets in [Rn, then K can be represented in the form

1 ~i<j~n

and for 1~ p < 00, P =f. 2, K is IP(n )-convex if and only if nij(K) is
IP(2)-convex for all (i, j) E Nn x Nn with i <j.

Proof We prove the assertion on norm-convexity in case p = 1. Let K
be ll(n)-convex and let (i, j) E N n x Nn , i <j. Then nij(K) has the property
that any two distinct points (ai' G;), (b i, hJ E ny(K) can be joined by a
rectifiable curve of length lai-hil + laj-hjl lying entirely in nij(K). Then
also the closure nij(K) has this property and thus is 11(2)-convex.

Conversely, let all nij(K) be 11(2)-convex and let a, h be two distinct
points in K. If, e.g., (aj, a2 ) =f. (hI' h2 ) then n12(K) contains a between-point
(c l , c2 ) of (aj, a2 ) and (hI' h2 ). This implies the existence of a sequence
(km

) in K such that limm --+ co ndkm
) = (c l , C2) and for every r = 3, ..., n, the

sequence of numbers (k';') has a finite or infinite limit. For r E Nn put
k r := limm --+ co k';' and for r = 3, ..., n put

1

max{a" hr}

cr := min{a"hr}
kr

max{a" br} <kr~ 00

if -oo~kr<min{a"hr} (4.3)

min{a" hr} ~kr~max{a" hr}.

Then c:= (c l , ..., cn) is a point between a and h. Since for every
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(i, j) E Nnx Nn, i <j, 1iy(K) is a closed {1(2)-convex set containing the
elements~ aJ, (b i , bJ, and (k7', kj) (rn EN), we conclude that
(C i ,C;)E1iij(K) and hence CEK. Indeed, let (i,j)ENnxN n such that i<)
and (1,}) # (1, 2) and let, e.g., ai < bi and aJ < bJ . To illustrate we consider
the following three cases:

(i) k, E (hi' 00 J, kJE (bJ, 00 J,
(i1) kiE [-00, aJ, kJE (bJ, ooJ,
(iii) kiE [a" bJ, kJE(bJ, 00].

In case (i), (c i , cJ) = (b i, bJ) E 1iij(K). In case (ii), there exists a number
rna EN such that k7' < a i and kj > bJ for all integers rn): mo. Then for each
rn): rna, we can find a u7' E IR such that (u'!', bJ) is between (k7', kj) and
(ai' a;) and belongs to 1iij(K). As u7' ~ ai < hi' also (c i , cJ) = (ai' hJ) is
contained in 1iiiK). As well in case (iii), for all sufficiently large m there
exists an element (u7', bJ) E 1iij(K) which is a between-point of (k7', kj) and
(ai' aj ). As (k7') is a bounded sequence, also (u7') is bounded and hence has
a convergent subsequence with limit, say Ui . As (u i , bj ) E 1iij(K) and
Ui ~ k i ~ bi' also (c i , cj ) = (k i, bJ belongs to 1iij(K).

We now wish to show that a cosun K in fP(n), 1~ P< 00, P # 2, can be
represented as the intersection of a family of closed [P(n)-convex cylinder
sets. For this, we proceed by iteration, we first prove that, if K is a cosun in
[P(n), it admits the representation

n

K= n {ZE [Rn; ri(z) Er,.(K)};
i~l

then we show that ri(K) is a cosun in [P(n - 1). In order to verify (4.4) we
treat the cases p = 1 and 1< p < 00, P # 2, separately.

If p = 1, a representation of the form (4.4) can be proved for the sets G y

in [l(n). Recall that for every xE[l(n)

G,= {zE[I(n); <x, -z)s):O}

={(Zl, ...,Zn)EW; itl xisgnzi~ itl IXil}.
Zi=FO z/=O

LEMMA 4.5. If x E [l(n), n): 3, then

n

Gx= n {zE[l(n);r,.(z)Er,.(Gx)}'
i~l

Proof Let zEzt(n) such that Li(Z)ELi(Gx) for each iEN n . Then
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Z- z;e; E Gx for each i E Nn . Thus, if Z; = 0 for some i E Nn , then ZE Gx. If,
however, z;#O for each iE N n , we have the inequalities

n

L xjsgnzj:(x;sgnz;+ Ix;1
j~l

which, by addition, imply

n n

(n-I) L xisgnzi:( L IxJ
;=1 ;~1

Supposing sgn Z; = sgn X; for each i E Nn gives a contradiction. Indeed,
on the one hand, X # 0 since Z; # 0 for each i E Nn' on the other
hand, (n - 2) L7= 1 Ix;1 :( 0, hence X = O. Therefore, there must be an i E Nn

such that sgn Z; # sgn X; and hence X; sgn Z; + Ix;1 = 0 which implies
Ll= 1 Xj sgn Zj:( O. Thus, Z E Gx.

PROPOSITION 4.6. If K is a cosun in fl(n), n~3, then

n

K= n {zEf1(n);rlz) ErlK)}.
;=1

Proof Recalling that

K= n (k+G x - k )

(X,k)ER~

and using the representation formula from Lemma 4.5 we have

K= n{ZEf1(n);rlZ)E n r;(k+Gx _ k )},

;=1 (X,k)ER~

where the sets r;(k+Gx _ k ) are closed for all iEN n and all (X,k)ER'.K.
From this we get the formula stated in the proposition.

Observe that Lemma 4.5 is no longer valid in fP(n), I < p < 00, P # 2. To
prove formula (4.4) in this case we use a typical convexity argument
instead noting that in a strictly convex space a cosun is a convex set. Thus,
(4.4) is first verified for linear hyperplanes that are cosuns. If K c ~n is a
linear subspace of dimension :( (n - 2), (4.4) is valid in any case even if K
is not a cosun. The general case then can be handled by these linear results
and known theorems on convex existence sets of best coapproximation.
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LEMMA 4.7. If K is a linear hyperplane that is a cosun in IP(n),
1< P < 00, P #- 2, n ~ 3, then there is an i E N n such that

K= {ZElRn;t"i(Z)Et"i(K)}.

Proof For brevity, we put K i := {ZE W; t"lZ)E't"i(K)}. Note that
K = K i if and only if ei E K. Suppose that ei rt K for each i E Nn' Then for
each such i there exists a unique k i E K and a unique Ai E IR\ {O} such that
e1 = k i+ Aiei (k 1 = 0, )"1 = 1). The vectors e1

- Aiei (i = 2, ..., n) then form a
basis for K Since K is a linear cosun in a smooth space, it is a cochebyshev
set. Let xrtK and put y :=x-RK(x). Then <y, k)s=O for each kEK.
Choosing k := e1

- Aiei (i = 2, ..., n) we obtain Yl = Yil),,1 p-l sgn Ai (i E N n ),

and hence

(4.8 )

Taking now the linear combination k := :L7= 2 ale l
- Aie i

) with positive ai'
(4.8) leads to the equation

(a i > 0)

which is false, if 1 < P < 00, P #- 2, and n ~ 3. Thus there must be at least
one i E N n such that ei E K.

E.g., in [3J it is shown that under the hypotheses of Lemma 4.7 the
hyperplane K even contains at least (n - 2) canonical unit vectors of IRn. Of
course, the proof of this stronger result requires a more sophisticated
argument.

Before taking up the general case let us mention that the formula given
in Lemma 4.7 also holds for cosuns that are closed half spaces.

PROPOSITION 4.9. If K is a cosun in fP(n), 1 < P < 00, P #- 2, n ~ 3, then

n

K = n {z E W; ,lz) E 'i(K)}.
;= 1

Proof Since fP(n) is strictly convex for the p's in question, K is a
convex set. If K #- 0, let Q be the set of smooth boundary points of K, and
for each q E Q, let H q be the closed half space which is determined by the
supporting hyperplane to Kat q and contains K. Then Q is dense in oK
and

640/54/3-5
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As H q is an existence set of best coapproximation and thus a cosun, we
have

n

H q = n {zElRn;r;(z)Erj(Hq )}.

j~[

Therefore,

K = n{z E IRn; r;(z) E n r;(Hq )},

j~[ qEQ

where for each i E Nn and each q E Q, r j(Hq ) is either a closed half space of
IR n- [ or the entire space IRn -1, in any case a closed set. Thus the stated
formula follows in this case.

If K= 0, we may assume, without loss of generality that 0 E K. Then
linK is a proper linear subspace of IRn, and moreover, an existence set of
best coapproximation, thus admitting a representation in the form given by
(4.4). Suppose there exists an XE W\K such that rj(x)Er;(K) for each
i E Nno Then x Elin K and for each i E Nn there is a sequence (km

) in K such
that x=limm ..... oo(km+ (xj-kr)ei) and the sequence (kr) of real numbers
has a finite or infinite limit. In both cases, it follows that e j

E lin K. Indeed,
if limm..... 00 kr =: k jE IR, then limm..... 00 km=: k E K and X j=F k j, since x $ K,
hence

If limm..... 00 kr = ±00, then

e
j
= limm..... 00 (kr) -[ k mE lin K.

Since e j belongs to lin K for each i E Nn and, on the other hand,
dim(lin K) ~ n - 1, we obtain a contradiction.

PROPOSITION 4.10. Let 1~ p < 00, P =F 2, and n ~ 3. If K is a cosun in
fP(n), then for each i E N n , r;(K) is a cosun in fP(n - 1).

Proof We prove that r[(K) is an existence set of best coapproximation.
Let us recall that for all xEfP(n), RK(x) is a compact fP(n)-convex subset
of K and hence 1t[(RK (x)) is a compact interval of IR.

Let (z2"",zn)$r[(K). Then for all AEIR, ZA:=(A,Z2"",Zn)$K. If there
exists a AE IR such that AE1t I (R K(ZA)), then for each k ER K(ZA) satisfying
A= 1t 1(k), we have rl(k) ER'1(K)(Z2' ..., zn).

Suppose now that for all AEIR, A$1t I (R K (zA)). Then the sets

Al := {A E IR; 1t[(RK (ZA)) C (- 00, A)}

A 2 := {A E IR; 1t 1(R K (zA)) C (A, oo)}
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are disjoint and have union IR. Moreover, since R k is upper semi-con
tinuous, 11: I continuous, and z;· continuously depends on A, A I and A 2 are
open subsets of IR. Hence, IR being connected, either Al = 0 or A 2 = 0.
for instance, A 2 = 0, then there exists a ..1,0 E IR such that UA0-0 TI(RK(z;'))
is a bounded subset of W - I.

Indeed, if we fix a point k E K, then for each A~ k 1 =: ..1,0 and each
e E RK(ZA), we have

liT 1(kA)- Tl(k)ll p < (t2 IZj - kjl PYIP,

since IA-kII P < Iq-kII P. Consequently, there is a decreasing sequence
(Am) in IR and a sequence (km) in K such that 1imm~ooAm=-oo,

k m ERK(ZAm
) for all mEN, and the sequence (r 1(km

)) converges to some
element UETI(K). One easily checks that uER T1 (K)(Z2, ..., zn)'

Using Propositions 4.6, 4.9, and 4.10 systematically we proceed as
follows. If K is a cosun in fP(n), 1~ p < 00, P #- 2, n ~ 3, then

n

K= n {ZE [Rn; T7[(Z)ET~(K)}
i[~1

and T7[(K) is a cosun in /P(n -1), thus it can be expressed as

n-I
T~(K)= n {YElRn-I;T72-1(Y)E(T%-loT~)(K)}.

i2~ 1

Combining both formulas we obtain
n n-l

K= n n {ZElRn; (T%-loT71)(Z)E(T72-loT71)(K)},
il= 1 i2=1

where (T%-loT~)(K) is a cosun in /P(n-2). By iteration, it follows that

n 3

K= n ... n
i1=1 in-2=1

and (TLzooor7t)(K) is a cosun in /P(2).
Since for every (n - 2)tuple (in _ 2, ... , idE N3 X ... X Nn there is a unique

pair (i, j) E N n X N n with i < j such that

we have, in fact, the formula

K= n
1 :<S;i<j~n

640/54/3-5'

(4.11 )
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So far we have proved that a cosun in I P(n), 1~ p < 00, P =I 2, n?: 3, is
the intersection of a family of closed IP(n)-convex cylinder sets. The con
verse is true if 1< p < 00, P =I 2, as follows from a general result on
existence sets of best coapproximation in strictly convex spaces cited in
Section 2. Concerning the case p = 1, we already mentioned that the inter
section of an arbitrary family of closed 11(n )-convex cylinder sets need not
be always 11(n)-convex. If, however, it is so, it is even a cosun in 11(n), as
may be seen by Theorem 4.12 below. Thus, in order to obtain a cosun from
a given family of closed cylinder sets-with the assertion of Lemma 4.2 in
mind-it is reasonable to make the assumption of norm-convexity rather
to the intersection than to each single member of the family.

THEOREM 4.12. Let 1~ p < 00, P =I 2, n?: 3. A nonempty subset of W is
a cosun in IP(n) if and only if it is fP(n )-convex and the intersection of a
family of closed cylinder sets.

Proof It remains to prove the sufficiency of the assertion. Let K be the
intersection of a family of closed cylinder sets such that K is IP(n )-convex.
Then by Lemma 4.2, K can be expressed in the form (4.11) and for each
(i, j) E N n x N n with i <j, 1rij(K) is a closed IP(2)-convex subset of [R2 which
implies that every cylinder set

(i, j) E Nn x Nn' i < j, is a cosun in fP(n). We claim that also the intersection
K = n1,,;; i <j";; n Kij is an existence set of best coapproximation. This is
known for p > 1. The following argument primarily intended for p = 1 also
applies to the other p's under discussion.

Let x E [Rn \K. By [3] there exists an element Z E BK(X) which is minimal
in the weak sense with respect to K, i.e., if z' E BK(Z), then
liz' - kll = liz - kll for each k E K. We shall prove that Z must belong to K.
For this fix (i, j) E Nnx Nn, i <j. There exists a u = (u ll ... , un) E RKlz) such
that Ur = Zr for each r E Nn \ {i, j}. Since Z is a minimal point in the weak
sense with respect to K, it follows that

whence

Taking (ki,kj)=(ui,uj ) this equation leads to Ui=Zi' uj=Zj' thus U=Z
implying Z E Kij. Since this applies to each (i, j) E Nn x Nn with i < j, we
have ZEK and hence zERK(x).
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We now wish to characterize cosuns in IP(n) by special families of simply
constructed IP(n)-convex cylinder sets, in particular in case p = 1.

Concerning fP(n), 1 < p < 00, P oF 2, n ~ 3, Theorem 4.12 reads: A non··
empty subset of W is a cosun in IP(n) if and only if it is the intersection of a
family of closed convex cylinder sets.

Before going on, let us introduce the following notation. Let H be a
closed half space of IRn and H o that translate of H whose bounding hyper
plane contains the origin. Then by the 12(n )-normal of H, we mean the
unique vector U E F(n )\Ho with IIul1 2= 1 that is orthogonal to aHa with
respect to the F(n )-norm.

Plainly, a proper subset of W is a closed convex cylinder set with base in
the (i, j)-coordinate plane if and only if it is the intersection of a family of
closed half spaces whose P(n )-normals have at most the ith and jth coor
dinate different from zero. Thus, the known characterization of cosuns in
IP(n), 1 < p < 00, P oF 2, is just a corollary of Theorem 4.12.

COROLLARY 5.1 (of Theorem 4.12). A proper subset of W is a cosun in
IP(n), 1 < p < 00, P oF 2, n ~ 3, if and only if it is the intersection of a family
of closed half spaces whose P(n )-normals have at most two nonzero coor
dinates.

In case p = 1 the class of closed half spaces has to be replaced by a wider
class of II-convex sets. To this end we introduce the following definitions.

A connected proper subset A c IRn (n ~ 2) is called an angular space if
there exist two closed half spaces HI and H 2 such that A = HI U H 2 • We
can (HI' H 2) a pair of generating half spaces of A. An angular space A is a
half space itself if and only if the 12(n)-normals of a pair of generating half
spaces of A coincide. If an angular space A is not a half space then there is
exactly one pair of generating half spaces of A. Their bounding hyperplanes
intersect in an (n - 2)-dimensional affine subspace which we call the edge of
A. In case n = 2 we merely speak of the vertex of A. (If A is a half space, an
edge is not defined.) By the fl(n )-normals of an angular space A we mean
the uniquely determined 12(n )-normals of its generating half spaces. (They
coincide if and only if A itself is a half space.)

Throughout this section we deal with II-convex angular spaces that are
cylinder sets. For their characterization we have

LEMMA 5.2. (i) Given an angular space A c [R2 that is not a half space,
with 12(2)-normals (gl' g2) and (hI' h2), then A is [1(2)-convex if and only if
g I h I ~ 0 and g2 h2~ 0, i.e., the 12(2 )-normals of A lie in some quadrant of [R2.
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(ii) If (i, j) E NnX Nn with i < j, then a proper subset C c W is a cylin
der set with base in the (i, j)-coordinate plane and ny(C) is an ll(2)-convex
angular space of IR Z if and only if C is an angular space of IRn, whose
P(n )-normals lie in some quadrant of the (i, j)-coordinate plane.

Now, if K is a cosun in ll(n), it takes the form

n {Z E IRn; nij(z) E w+ Gy _ w}.
1 ~ i <j~n (y, w) E R~ij{K)

K= n
If (i, j) E Nnx Nn with i < j and (y, w) E R"ij(K) we set, for brevity,

A (i, j, y, w) := {z E W; nij(z) E W + Gy_w }.

For all y = (Yl' yz) and all w = (wjo wz) in IRz with y # w, w + Gy _ W is an
lZ(2)-convex angular space of IRz of the form

{(z l' zz); az 1 :::; aWl or f3zz:::; f3wz},

where a, f3 E { -1,0, 1} and \a\ + 1f3\ # 0; indeed, a =° or f3 =° if
IYl-wll # Iyz-wzl, and a#O, f3#0 if IYl-wll = Iyz-wzl. In the first
case, w +Gy _ w is a half space of IRz, in the latter it is an angular space
which is not a half space, with IZ(2)-normals (a,O) and (0, f3) and vertex
at w.

Thus, for all (i,j)ENnxN n, i<j, and all (y,w)ER"ij(Kl' y#w, the
cylinder set A(i, j, y, w) is an angular space whose P(n)-normals lie in some
quadrant of the (i, j)-coordinate plane. If A( i, j, y, w) is not a half space,
the set {z E W; nij(z) = w} is its edge whose distance from K is zero, since
WE1Cij(K).

Thus, one part of the following theorem is proved.

THEOREM 5.3. A proper subset oflRn (n~2) is a cosun in ll(n) if and
only if it is the intersection of a family'll of angular spaces of IRn with the
following properties. For each A E'll:

(i) The lZ(n)-normals of A lie in some quadrant of a two-dimensional
coordinate plane of IRn.

(ii) IfA is not a half space its edge has distance zero from the intersec
tion of the family'll.

Proof Given a family 'll of angular spaces of IRn which satisfy both
conditions (i), (ii) above, let K := nA E21 A. By (i), for every A E'll, there is
a pair (s, t) E N n x N n , s < t, such that
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and ns,(A) is an [1(2)-convex angular space of [R2. (If A is not a half space,
the pair (s, t) is unique.) Thus, K takes the form

K= n {zE[Rn;nij(z)E n 1rij(A)} ,
1 ~i<j~n .... AEm

where nij(A) is either an [1(2)-convex angular space of [R2 or the entire
space [R2. We wish to show that K is [l(n)-convex. Then, by Theorem 4.12,
K is a cosun in [l(n).

Let a, bE K, a =I- b. We first assume

There exists an angular space A oE 'll which is not a half space,
such that its edge does not contain the elements a, b, but a
between-point of a and b. (5.4)

Let us suppose that the base of Ao lies in the (1, 2)-coordinate plane and let
us denote the vertex of ndAo) by (Cl> C2)' Then, by (5.4), (c l , c2 ) is a
between-point of 1tda) and ndb), and, by assumption (ii), belongs to
ndK). We now proceed as in the second part of the proof of Lemma 4.2.
For rE Nn\{l, 2} we may define Cr as in (4.3) such that c:= (e l , ... , cn) is a
point between a and b. Since for each (i, j) E Nn x Nn with i <j and each
AE'll the set 1tij(A) is closed and [1(2)-convex containing the elements
nij(a), nij(b), and nij(km

) (mE N), it follows analogously to the procedure in
the proof of Lemma 4.2 that nij(c) E nij(A) for all (i, j) E Nn x N n , i <j, and
all A E Ill; hence C E K.

If the case (5.4) does not apply, then for each A E'll, both points a and b
lie in one of the generating half spaces of A. Thus the line segment joining a
and b must be contained in each A and, consequently, in K.

As may be seen from the "only if' part of the proof of Theorem 5.3 the
class of angular spaces fitting for characterizing cosuns in [l(n) may be
even further restricted.

COROLLARY 5.5. A proper subset of W (n ~ 2) is a cosun in 11(n) tf
and only if it is the intersection of a family 'll of angular spaces whose
fl( n )-normals belong to the set of unit vectors {±e i

; i E Nn} and whose edges
(if any) have distance zero from the intersection of the family'll.

6. CONCLUDING REMARKS

It is plain that for pt>PzE(l, CXl)\(2} a subset of [Rn is a cosun with
respect to [Pl(n) if and only if it is a cosun with respect to [P2(n). To
compare this with the situation in [l(n) let us point out the following
corollary of Theorem 4.12.
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PROPOSITION 6.1. For a proper subset K of IRn the following assertion are
equivalent:

(i) K is a convex cosun in 11(n).

(ii) K is the intersection of a family of closed convex cylinder sets.

(iii) K is the intersection of a family of closed half spaces whose
12(n)-normals have at most two nonzero coordinates.

(iv) K is a cosun in IP(n) for some p, 1 < p < 00, P =12.

Thus, the class of cosuns in [I(n) contains all subsets of W that are
cosuns with respect to IP(n), 1 < P < 00, P =12; in addition there are just
those cosuns of 11(n) that are nonconvex. From this it is also clear that the
classes of linear cosuns in IP(n) coincide for all p, 1< p < 00, P =12. Hence,
the following characterization of linear cosuns known in IP(n )-spaces for
1 < p < 00, P=12, also holds in 11(n).

PROPOSITION 6.2. Let 1<p < 00, P =12. For a proper linear subspace K
of IRn the following assertions are equivalent:

(i) K is a linear cosun in IP(n).

(ii) K is the intersection of a family of linear hyperplanes whose
P(n )-normals have at most two nonzero coordinates.

(iii) K is the range of a contractive linear projection in IP(n).

It is well known that (iii) is equivalent to the condition that K is isometrically
isomorphic to some IP-space. This is a special case of a result due to
Ando [1] (p> 1) and Douglas [13] (p= 1), respectively.

In la)(n) the class of cosuns is much larger than in IP(n), l<p<oo,
p =12, even in the linear and convex case. The exact characterization of
cosuns in la) (n) is left to another paper.
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